Exercise 3

Solve the differential equation or initial-value problem using the method of undetermined coefficients.

$$
9 y^{\prime \prime}+y=e^{2 x}
$$

Solution

Since the ODE is linear, the general solution can be written as the sum of a complementary solution and a particular solution.

$$
y=y_{c}+y_{p}
$$

The complementary solution satisfies the associated homogeneous equation.

$$
\begin{equation*}
9 y_{c}^{\prime \prime}+y_{c}=0 \tag{1}
\end{equation*}
$$

This is a linear homogeneous ODE, so its solutions are of the form $y_{c}=e^{r x}$.

$$
y_{c}=e^{r x} \quad \rightarrow \quad y_{c}^{\prime}=r e^{r x} \quad \rightarrow \quad y_{c}^{\prime \prime}=r^{2} e^{r x}
$$

Plug these formulas into equation (1).

$$
9\left(r^{2} e^{r x}\right)+e^{r x}=0
$$

Divide both sides by $e^{r x}$.

$$
9 r^{2}+1=0
$$

Solve for r.

$$
\begin{gathered}
r^{2}=-\frac{1}{9} \\
r=\left\{-\frac{i}{3}, \frac{i}{3}\right\}
\end{gathered}
$$

Two solutions to the ODE are $e^{-i x / 3}$ and $e^{i x / 3}$; by the principle of superposition, then,

$$
\begin{aligned}
y_{c}(x) & =C_{1} e^{-i x / 3}+C_{2} e^{i x / 3} \\
& =C_{1}\left(\cos \frac{x}{3}-i \sin \frac{x}{3}\right)+C_{2}\left(\cos \frac{x}{3}+i \sin \frac{x}{3}\right) \\
& =\left(C_{1}+C_{2}\right) \cos \frac{x}{3}+\left(-i C_{1}+i C_{2}\right) \sin \frac{x}{3} \\
& =C_{3} \cos \frac{x}{3}+C_{4} \sin \frac{x}{3} .
\end{aligned}
$$

On the other hand, the particular solution satisfies the original ODE.

$$
\begin{equation*}
9 y_{p}^{\prime \prime}+y_{p}=e^{2 x} \tag{2}
\end{equation*}
$$

Since the inhomogeneous term is an exponential function, the particular solution is $y_{p}=A e^{2 x}$.

$$
y_{p}=A e^{2 x} \quad \rightarrow \quad y_{p}^{\prime}=2 A e^{2 x} \quad \rightarrow \quad y_{p}^{\prime \prime}=4 A e^{2 x}
$$

Substitute these formulas into equation (2).

$$
\begin{gathered}
9\left(4 A e^{2 x}\right)+A e^{2 x}=e^{2 x} \\
37 A e^{2 x}=e^{2 x}
\end{gathered}
$$

Match the coefficients on both sides to get an equation for A.

$$
37 A=1
$$

Solving it yields

$$
A=\frac{1}{37},
$$

which means the particular solution is

$$
y_{p}=\frac{1}{37} e^{2 x} .
$$

Therefore, the general solution to the ODE is

$$
\begin{aligned}
y(x) & =y_{c}+y_{p} \\
& =C_{3} \cos \frac{x}{3}+C_{4} \sin \frac{x}{3}+\frac{1}{37} e^{2 x},
\end{aligned}
$$

where C_{3} and C_{4} are arbitrary constants.

